22,636 research outputs found

    Personalized Pancreatic Tumor Growth Prediction via Group Learning

    Full text link
    Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data, in order to discover high-level features from multimodal imaging data. A deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient's tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of 86.8% +- 3.6% and RVD of 7.9% +- 5.4% on a pancreatic tumor data set, outperforming the DSC of 84.4% +- 4.0% and RVD 13.9% +- 9.8% obtained by a previous state-of-the-art model-based method

    Contact interactions in low scale string models with intersecting D6D6-branes

    Full text link
    We evaluate the tree level four fermion string amplitudes in the TeV string mass scale models with intersecting D6D6-branes. The coefficient functions of contact interactions subsuming the contributions of string Regge resonance and winding mode excitations are obtained by subtracting out the contributions from the string massless and massive momentum modes. Numerical applications are developed for the Standard Model like solution of Cremades, Ibanez, and Marchesano for a toroidal orientifold with four intersecting D6D6-brane stacks. The chirality conserving contact interactions of the quarks and leptons are considered in applications to high energy collider and flavor changing neutral current phenomenology. The two main free parameters consist of the string and compactification mass scales, ms m_s and Mc M_c. Useful constraints on these parameters are derived from predictions for the Bhabha scattering differential cross section and for the observables associated to the mass shifts of the neutral meson systems K−Kˉ,B−Bˉ,D−Dˉ K-\bar K, B-\bar B, D-\bar D and the lepton number violating three-body leptonic decays of the charged leptons μ\mu and τ \tau .Comment: 34 pages, 7 figure

    Properties of the phi meson at high temperatures and densities

    Full text link
    We calculate the spectral density of the phi meson in a hot bath of nucleons and pions using a general formalism relating self-energy to the forward scattering amplitude (FSA). In order to describe the low energy FSA, we use experimental data along with a background term. For the high energy FSA, a Regge parameterization is employed. We verify the resulting FSA using dispersion techniques. We find that the position of the peak of the spectral density is slightly shifted from its vacuum position and that its width is considerably increased. The width of the spectral density at a temperature of 150 MeV and at normal nuclear density is more than 90 MeV.Comment: 4 pages, 5 figures, Poster presented at Quark Matter 200

    Single-qubit optical quantum fingerprinting

    Full text link
    We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare `tetrahedral' qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed the classical capability. We prove that shared entanglement permits 100% reliable quantum fingerprinting, which will outperform classical fingerprinting even with arbitrary amounts of shared randomness.Comment: 4 pages, one figur

    Phase diagram and excitations of a Shiba molecule

    Full text link
    We analyze the phase diagram associated with a pair of magnetic impurities trapped in a superconducting host. The natural interplay between Kondo screening, superconductivity and exchange interactions leads to a rich array of competing phases, whose transitions are characterized by discontinuous changes of the total spin. Our analysis is based on a combination of numerical renormalization group techniques as well as semi-classical analytics. In addition to the expected screened and unscreened phases, we observe a new molecular doublet phase where the impurity spins are only partially screened by a single extended quasiparticle. Direct signatures of the various Shiba molecule states can be observed via RF spectroscopy.Comment: 13 pages, 7 figure

    Seasonal distribution and drivers of surface fine particulate matter and organic aerosol over the Indo-Gangetic Plain

    Get PDF
    The Indo-Gangetic Plain (IGP) is home to 9 % of the global population and is responsible for a large fraction of agricultural crop production in Pakistan, India, and Bangladesh. Levels of fine particulate matter (mean diameter &lt;2.5 µm, PM2.5) across the IGP often exceed human health recommendations, making cities across the IGP among the most polluted in the world. Seasonal changes in the physical environment over the IGP are dominated by the large-scale south Asian monsoon system that dictates the timing of agricultural planting and harvesting. We use the WRF-Chem model to study the seasonal anthropogenic, pyrogenic, and biogenic influences on fine particulate matter and its constituent organic aerosol (OA) over the IGP that straddles Pakistan, India, and Bangladesh during 2017–2018. We find that surface air quality during pre-monsoon (March–May) and monsoon (June–September) seasons is better than during post-monsoon (October–December) and winter (January–February) seasons, but all seasonal mean values of PM2.5 still exceed the recommended levels, so that air pollution is a year-round problem. Anthropogenic emissions influence the magnitude and distribution of PM2.5 and OA throughout the year, especially over urban sites, while pyrogenic emissions result in localised contributions over the central and upper parts of IGP in all non-monsoonal seasons, with the highest impact during post-monsoon seasons that correspond to the post-harvest season in the agricultural calendar. Biogenic emissions play an important role in the magnitude and distribution of PM2.5 and OA during the monsoon season, and they show a substantial contribution to secondary OA (SOA), particularly over the lower IGP. We find that the OA contribution to PM2.5 is significant in all four seasons (17 %–30 %), with primary OA generally representing the larger fractional contribution. We find that the volatility distribution of SOA is driven mainly by the mean total OA loading and the washout of aerosols and gas-phase aerosol precursors that result in SOA being less volatile during the pre-monsoon and monsoon season than during the post-monsoon and winter seasons.</p

    Lower bounds in the quantum cell probe model

    Get PDF
    We introduce a new model for studying quantum data structure problems --- the "quantum cell probe model". We prove a lower bound for the static predecessor problem in the 'address-only' version of this model where, essentially, we allow quantum parallelism only over the 'address lines' of the queries. This model subsumes the classical cell probe model, and many quantum query algorithms like Grover's algorithm fall into this framework. We prove our lower bound by obtaining a round elimination lemma for quantum communication complexity. A similar lemma was proved by Miltersen, Nisan, Safra and Wigderson for classical communication complexity, but their proof does not generalise to the quantum setting. We also study the static membership problem in the quantum cell probe model. Generalising a result of Yao, we show that if the storage scheme is 'implicit', that is it can only store members of the subset and 'pointers', then any quantum query scheme must make \Omega(\log n) probes. We also consider the one-round quantum communication complexity of set membership and show tight bounds

    Possibility, Impossibility and Cheat-Sensitivity of Quantum Bit String Commitment

    Get PDF
    Unconditionally secure non-relativistic bit commitment is known to be impossible in both the classical and the quantum worlds. But when committing to a string of n bits at once, how far can we stretch the quantum limits? In this paper, we introduce a framework for quantum schemes where Alice commits a string of n bits to Bob in such a way that she can only cheat on a bits and Bob can learn at most b bits of information before the reveal phase. Our results are two-fold: we show by an explicit construction that in the traditional approach, where the reveal and guess probabilities form the security criteria, no good schemes can exist: a+b is at least n. If, however, we use a more liberal criterion of security, the accessible information, we construct schemes where a=4log n+O(1) and b=4, which is impossible classically. We furthermore present a cheat-sensitive quantum bit string commitment protocol for which we give an explicit tradeoff between Bob's ability to gain information about the committed string, and the probability of him being detected cheating.Comment: 10 pages, RevTex, 2 figure. v2: title change, cheat-sensitivity adde

    Quantum fingerprinting

    Get PDF
    Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.Comment: 8 pages, LaTeX, one figur
    • …
    corecore